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Learn to Threshold: ThresholdNet with
Confidence-Guided Manifold Mixup for Polyp
Segmentation

HKlaoging Guo, Chen Yang, Yajie Liu, and Yixuan Yuan

Abstract—The automatic segmemation of polyp in en-
doscopy images ks crucial for eary diagnosis and cure of
colorectal cancer. Existing deep karning-based methods
for polyp segmentation, however, are inadequate due 1o the
limited annotated dataset and the class imbalance prob-
lems. Moreover, these methods obtained the fimal polyp
sagmentation results by simply threshokding the likelihood
maps at an eclectic and equivalent value {often set to 0.5).
In this paper, we propose a novel ThresholdNet with a
confide nce-quided manifold mixup ({CGMMix) data augmen-
tation method, mainly for addressing the afore mentioned
issues in polyp segmentation. The CG MM conducts man-
ifokl mixup at the image and feature kvels, and adap-
tively lures the decision boundary away from the under-
represented poly p class with the confidence guidance o al-
leviate the limited training dataset and the class imbalande
problems. Two consistency reqularizations, mixup feature
map consistency (MFMC) loss and mixup confidence map
consistency {MCMC) loss, are devised to exploit the con-
sistent constraints in the training of the augmented mixup
data. We then propose a two-branch approach, temed
ThresholdNet, 1o collaborate the segmentation and thresh-
old lkeaming in an alkemative training strategy. The thresh-
okl map supervision generator {TMSG) is embedded to pro-
vide supervision for the threshokl map, thereby inducing
better optimization of the threshold branch. As a conse-
quence, ThreshokiNet is able ®© Glibrate the segmenta-
tion result with the karned threshold map. We illustrate
the effectiveness of the proposed method on two polyp
segmentation datasets, and our methods achieved the
state-of-the-art res ult with 87.307% and 87 879% dice 500
on the EndoScene dataset and the WCE polyp dataset
The source code is availRbke at htops: //gichub, com
Guo—¥iaoging/ThrashoeldHat.

index Terms—Polyp segmentation, CGMMD  data
awmemation, Consistency reqularization, ThreshokiNet,
TMSG module.
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OLORECTAL cancer (CRC is the third mmost comrmnnly
diagrosed cancer and the second mest commen cause of
caneer deaths in the United States, with 147 950 new cases
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baing estimated and 53,200 daaths being cansed by CRC in
2020 [1]. Though the survival rate is low if cancer has spread
outside the colorectum, early diaginsis and proper treatment
can lead to a high cure rate with a favorabla survival rate of
80% [1]. CRC umally arizes from adenomatons polyps, ad
a polyp may take 10 to 15 ywears to develop info cancer if laft
untreated [Z]. Henre, detactinge and removing polyps before
they Decome malighant can sighificantly reduce nortality
rates, Remnlar screeping is a widely nsed procedurs in hospital
to idertify the adenomatous polyps and prevent CRC [2]. But
such soresnings ars marmally parformed by clinicians, thers-
fora affacted by hurman factors such as sxperience, leading to
subjactive diagnosis, A possible solution istodesisn antomatic
polyp sezmentation modals with great accuracy and sensitivity,
which could aid clinicians doring the scresning procedura,

In recent years, many deep learming approaches have shown
prominent performance for the polyp segmertation [3]-{22].
Howwavar, it remains an unsolved challnge with two main
limitations, Firsly, anmotated data in the medical donmain
is limited, especidly in polyp segmentation that requires
pixel-wise anmotations. Such manmal segmertation requiras
profassional medical kmowledes as well as a high desras of
concentration, and even skilled clinicians may fail to reach
a ecnsensus on the mannal sepmentation results, The limited
anmotated data in polyp segmentation thus leads to overfitting
problems and becomes a botfleneck 1o desp learming bazed
methods, Secondly, sxisting methods [6]-[22] simply asgquire
the segmerfation result by thresholding the predicted likeli-
hood map with 0.3 during the testing phaze, ignoring the fact
that ifferent thresholds lead to varying results Intoitively,
Fig, 1 illustrates segrmentation results obtained with differant
thresholds, and the best results of (a), (B, (2, (d) images are
achieved when the thresheld eqoals to 001, 0.9, 0.1 and 0.9,
respectively, Hence, thresholding the likelibood maps with an
atbifrary constant is insffcient,

To tackle the aforementioned challenges, we delicately
design a Thresholdet with the COMMIix data angrnentation
methed, For the first challenge, to mitigate the overfitting prob-
lern and enhance the generalization of the trained model, one
derninart solution is data augimentation, Mixup is a recently-
proposed data augnentation meathod 1 generafe sdra fraining
samples by applving Kneqr cembiations af fralning images
and labels [23]-131]. However, rixup encoutages the rmodel
to center the decision boundary between classes, ignoting the
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Fig. 1: Illustratlon of segmentatlon results obtamed through dlfferent thresholds (constant threshold from 0.0 to 1.0 a.nd our
learned threshold map). If the likelihood of polyp class exceeds the threshold, then this pixel is categorized into the polyp
class. Images in rows (a-b) are sampled from the EndoScene dataset, while images in rows (c-d) are from WCE polyp dataset.

class imbalance problem existing in the polyp segmentation
task. It is reported that only around 5% pixels belong to
the polyp class in the collected endoscopy images, and this
class imbalance tends to group unseen foreground samples
towards the background class [29]. To remedy this drawback
of mixup, we propose confidence-guided manifold mixup (CG-
MMix) to asymmetrically and adaptively adjust the decision
boundary close to the background class and stay away from
the polyp class. Specifically, different from the original mixup
method, which directly implements linear behavior in the label
space, our CGMMix integrates the clinical consideration and
confidence map to adaptively threshold the soft mixup label,
further obtaining the ground truth of mixup images. Moreover,
CGMMix jointly conducts linear combination on image and
feature levels to enhance the smooth behavior between training
samples. In addition, two regularization losses, a mixup feature
map consistency (MEMC) loss and a mixup confidence map
consistency (MCMC) loss, are proposed to ensure the deep
supervision of the mixup sample at multiple feature levels.

To better threshold the predicted likelihood map for accurate
segmentation, a feasible way is to automatically learn the
threshold map that indicates the threshold value for each
position. Only one work [32] investigated this problem by
introducing a threshold loss. To explicitly leam the cormrect
threshold map, we propose a ThresholdNet to adaptively adjust
the threshold value of the corresponding likelihood map for
each pixel. Specifically, we design a two-branch network,
where a threshold branch is introduced to be parallel to the
segmentation branch. The threshold branch utilizes semantic
information extracted from the base network to decode and ob-
tain the threshold map, while the segmentation branch decodes
the same semantic information to predict the likelihood map.
These two branches are updated with a strategy of alternative
optimization, guaranteeing global convergence. Moreover, we
propose a threshold map supervision generator (TMSG) to
obtain the ground truth of threshold map, thereby inducing
better supervision of the threshold branch. Adaptively adjust-
ing threshold for each position, ThresholdNet can explicitly
calibrate the final segmentation results by dynamically thresh-
olding the predicted likelihood map, thus final predictions are
more aligned with ground truths.

In this paper, we propose a two-branch ThresholdNet with
the CGMMix for the polyp segmentation. The main contribu-
tions of this paper can be summarized into three aspects:

» In order to prevent overfitting and tackle the class imbal-
ance problem, we propose a novel CGMMix method to
augment limited training data with multi-level confidence
guidance, especially to enrich polyp information. More-
over, a MFEMC loss and a MCMC loss are proposed to
enhance the supervision for mixup data, thus promoting
segmentation performance.

+ We develop a novel two-branch ThresholdNet, which si-
multaneously predicts the likelihood map and the thresh-
old map. Different from existing methods that simply
acquire the segmentation result by thresholding the pre-
dicted likelihood map with 0.5, ThresholdNet is devised
to predict the threshold value for each position, further to
adaptively adjust the predicted likelihood map and rectify
final segmentation result.

+ We validate the effectiveness of our approach and conduct
ablation studies to investigate the proposed Threshold-
Net with CGMMix on two polyp segmentation datasets.
Extensive experiments demonstrate that the proposed
method shows superiority to state-of-the-art polyp seg-
mentation methods.

[l. RELATED WORK
A. Deep Learning for Polyp Segmentation

Deep convolutional neural networks (CNN), demonstrating
superior feature representation capability, are widely utilized
in the automatic polyp detection and segmentation [3]-[22].
Vizquez et al. [6] straightforwardly introduced the fully
convolutional network to polyp segmentation task, which is
the first attempt to apply deep learning method on the polyp
segmentation and serves as a benchmark. Qadir er al. [12]
adopted Mask R-CNN to joint polyp detection and segmen-
tation learning. To better segment polyps with various sizes
and features in image space, connections and aggregations
between high and low-level features were considered for
accurate prediction [7], [9], [17], [21], [22]. Wickstrem et
al. [17] utilized the pooling indices computed in the encoder
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Fig. 2: Mustration of the proposed ThresholdNet with CGMMix. ThresholdNet is comprised of a base network B, a segmentation
branch & and a threshold branch 7/, which is optimized with the original data and augmented data attained by CGMMix.

to perform non-linear upsampling in the decoder. To further
reduce the semantic gap between the encoder and decoder,
Zhou er al. [7] proposed UNet++ that introduced a series
of nested and dense skip connections between encoder and
decoder to enable deep supervision. Fang er al. [9] followed
the UNet++ to introduce up-concatenations and proposed a
selective kernel module for multi-scale feature aggregation.
Then the proposed network was trained with the joint guidance
of polyp area and boundary label, making the learned model
more sensitive to the prediction around polyp boundary.
Despite the significant progress of these models for polyp
segmentation, they may suffer unsatisfactory performance for
clinical application due to the limited training data. In addition,
the aforementioned segmentation algorithms are still prone to
make errors at uncertain regions, such as polyp boundaries
and fuzzy regions, because they simply threshold the predicted
likelihood map with 0.5 to obtain final polyp regions.

B. Mixup

Data augmentation increases the variety of training sam-
ples and can greatly improve the generalization capability of
deep learmming models [23]-[31], [33]. The traditional data
augmentation methods simply enrich datasets by distorting
image space, such as random translation, rotation, cropping,
flipping and adding noises [25], [33]. However, the aforemen-
tioned augmentation methods can only produce new images
that closely resemble original images, and the improvement
may not be satisfactory. Moreover, the resultant new images
share the same class of the original images, thus the vicinal
distribution between different classes has not been considered.

The recently proposed mixup augments data by producing
an element-wise linear combination of training images and
labels [23]. The newly generated images are noticeably differ-
ent than original images, and the linear combination reduces
the undesirable oscillations while predicting and guarantees a
robust model behavior. Increasing interests have been attracted
to modify and apply mixup in various tasks due to its excellent
properties [24]-[31]. Li ez al. [29] proposed an asymmetric
mixup for brain tumor core segmentation. The asymmetric

mixup can keep the decision boundary close to the background
class and increase the area of foreground logits, thus alleviat-
ing the class imbalance problem. Wang er al. [26] employed
an adversarial training strategy and applied mixup between
labeled and unlabeled data to reduce the empirical distribution
mismatch in semi-supervised learning. Xu et al. [24] applied
mixup to domain adaptation and proposed a domain mixup to
fully utilize the inter-domain information, which guaranteed
domain invariance in a continuous latent space.

Though mixup has been widely applied to natural image
classification problems, no work investigates its application in
the polyp segmentation. Moreover, the mixup method ignored
the data augmentation at feature level and the class imbalance
problem in the polyp segmentation task.

lIl. METHCODOLOGY

The overall framework of the proposed method is illustrated
in Fig. 2. Image-level mixup is first implemented to obtain
Ty, by pixel-wise convex combinations of two randomly
selected images x; and z; in the fraining dataset. Both criginal
images and mixup images are then fed into ThresholdNet.
A base network (B) maps input images to feature space. At
feature level, the extracted features B{x;) and B(xz;) are also
linearly mixed to produce mixup feature 5,,, (z). After that, the
framework is split into two branches, a segmentation branch
(S) and a threshold branch (7). Through the segmentation
branch, B(z;), B(zy) and By, (z) are separately passed to
obtain the likelihood map p. The threshold branch is parallel to
the original segmentation branch and has an identical structure
to that of the segmentation branch. B(z;), B(xy,) and B, (z)
are individually processed through it to obtain the prediction
of threshold map p*. Then the predicted likelihood map is
subtracted by the corresponding threshold map to obtain the
final segmentation prediction ', which should be similar to the
segmentation ground truth y. To explicitly learn the threshold
map, the TMSG module is proposed to obtain the ground
truth of threshold map ®, leading to better supervision of the
threshold branch. With the proposed confidence-guided mixup
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label, the mixup image and feature can also obtain the corre-
sponding #* through the TMSG module for threshold learning,
and adaptively adjust the decision boundary to alleviate the
class imbalance problem. Through alternative optimization
of the proposed segmentation and threshold losses, these
two branches are mutually constrained to extract individual
information and predict separate maps. Details are illuminated
in the following parts.

A. Confidence-Guided Manifold Mixup (CGMMix)

High-quality annotations are rare in the polyp segmen-
tation task, since the acquisition of expert annotations is
time-consuming and requires professional domain knowledge.
The limited pixel-wise annotated data unavoidably leads to
overfitting problem during training. The recently proposed
mixup augments data by producing an element-wise linear
combination of training images and labels [23], which is an
effective data augmentation method to improve the generaliza-
tion of whole-image classification model. Given two randomly
sampled training data (z;,%;) and (z;,%;), the augmented
mixup image and its corresponding label are calculated by
Z; = Az + (1 — Nz; and 4z = Ay; + (1 — A)yy, where A
is randomly sampled from a beta distribution Beta (e, 8), and
a, (3 are empirically set as 0.4 [23].

However, mixup only implements interpolations at the input
image space, which could not guarantee the linear behavior
at the level of hidden representations. Moreover, directly
applying the mixup, which is developed for the whole-image
classification task, to the polyp image segmentation model is
problematic. The reasons can be summarized into two aspects.
On the one hand, the original mixup encourages the model to
center the decision boundary between classes [29], ignoring
the class imbalance problem in polyp segmentation task. On
the other hand, considering that characteristics of polyps vary
significantly for different degrees of CRC, although feature
representations of some conspicuous polyp regions are weak-
ened by mixing with normal tissues, the corresponding regions
{just like polyps at their early stages) should still be diagnosed
as the polyp category in clinical practice.

To remedy these drawbacks of mixup, we propose CGMMix
data augmentation method at both image and feature levels,
and the CGMMix can adaptively adjust the decision boundary
by introducing confidence-guided threshold to the soft mixup
labels. In this section, we first describe the manifold mixup,
then introduce the mixup labels with confidence guidance and
finally present two consistency regularizations.

1) Image and feature-level mixup: Two randomly sampled
images z; and x; from training dataset are first linearly mixed
to produce mixup images z,,. Inputs of z; and z; are then
embedded to B(z;) and B(z;) in the feature space by a
base network. In order to yield a more smooth and linear
feature distribution, two feature embeddings are also linearly
interpolated to produce the mixup feature. The image and
feature-level mixups can be formulated as

T =Az; + (1 — Nzy

By (x) =AB(zg) + (1 — M) B(z;). &

(@ (b} © (d) (G

Fig. 3: Tllustration of confidence-guided mixup label: (a) the
mixed sample derived from two original images (z; and x;);
(b, c) confidence- guided polyp regions (r; and r;); (d) the
mixup label; (e) the confidence-guided mixup label.

With the linear interpolations at image space and hidden
representation, the ThreshodNet is able to behave linearly
between training images and features, thereby improving the
robustness and facilitating the generalization ability.

2) Confidence-guided mixup label: A threshold coefficient
t was introduced to threshold the original soft mixup label
in [29], and the modified mixup label is denoted as ¢y, =
d(Ay; + (1 — Ay > i), where §(-) = 1 if condition is
satisfied, and otherwise 4(-) = 0. This asymmetric mixup label
can increase the area of foreground logit distribution, thereby
alleviating class imbalance problem. Considering the various
appearances and characteristics of polyps for different degrees
of CRC, applying a constant threshold coefficient of ¢ on all
polyp samples is insufficient. Therefore, it may be beneficial to
adaptively assign the threshold for different polyp regions, and
we propose the confidence-guided mixup label. Specifically,
we first calculate confidence maps C(z;) and C,(z;) in
the segmentation branch by Cy(z) = p[,:,1] x v + p[;,:
,0) x (1 — y), where p[:,:,1] indicates the probability of the
polyp category. These calculated confidence maps in polyp
regions can reveal the severity degree of the polyp, and they
are integrated to obtain the correct mixup label, which can be
formulated as

Y = 80 Co(m) + (1 Ny - Clmy) > 1), ()

where v, € {0, 1}WXH, and 1w, has the same spatial
resolution of W x H as input images. Assuming r; = d{Ay; -
Celxs) > t)and r; = §((1—A)y;-Cs(z;) > t) are confidence-
guided polyp regions of x; and x;, then r; = r; —r; x r; and
’r;- = vy — 7 X r; are the non-overlapping polyp regions, and
Tinter = T3 %75+ (1—r;) X (1—r;) denotes the resting regions,
as in Fig. 3. Then the confidence-guided mixup label can be
reformulated as v, = vi-7i+v;- 7";,- + v+ (1= Ny;] - Tinter

Intuitively, if those non-obvious polyps with the ambiguous
boundary and relatively low contrast (especially at their early
stages) are mixed with normal tissues, i.e., the characteristics
of polyp are overwhelmed, then its corresponding confidence
score should be small and the condition would not be satisfied,
thereby belonging to the normal class. Only if the mixup polyp
region, with a soft label above the adjusted threshold, still
belongs to the polyp class. Considering the confidence maps
may not be able to indicate the degree of the polyp accurately
at the early stages of training, the augmented images by
CGMMix are included after 50 epochs.
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3) Consistency regularization: To enhance the supervision
for mixup data, we propose a MFMC loss and a MCMC loss to
constrain the hidden feature representation and the likelihood
map of the mixed images.

For the MEMC loss, it regularizes the feature map of the
mixed image 5B(z.,) to be similar to the combination of the
feature maps (B(z;) and B(z;)) derived from two original
images. Since the element-wise consistency of feature maps
may lead to unstable training, we propose to regularize the
consistency on a defined cosine similarity map to avoid the
negative effects caused by the feature noises. Take B(z;) for
example, the feature cosine similarity map is calculated by

Cp(z:) = cos(fp, B(xs)) .
e P Tl 1BGIL
where f, = Elifi;zi@) is the average of foreground fea-

tures, and 7 < {0,1}*"" is down-sampled from y; with
the size w x h. To induce the decision boundary far away
from the under-represented polyp class at hidden features,
we follow the spirit of confidence-gnided mixup label in Eq.
{2y to derive the ground truth in MEMC loss calculation.
We first calculate confidence- guided polyp regions of z; and
zj, which are denoted by »; = = 8(Ay - O (gj) > ,2/ and
r; = ({1 — ANy - el (z5) > t). Note that Cy(x;), Cs(2s)
are bilinearly down-sampled from '(z;), Ce(z;) with size
of w x h and r;,r; € {0,1}*% Then the intersecting
polyp and normal regions can be represented by rypeer =
r; X1y + (1 —7r;) x (1 —r;), and the non-overlapping polyp
regions are v} = r; — ;> r; and ’.'"5— = r; — r; X rj Hence,
the ground truth of C'¢(x,) is formulated by

= Cp(ws) - i+ Crlzg) - 7

+ [AC¢(zs) + (1 = M)Cr(z5)] - rinter-
Notably, yo,(x,,) mainly modifies the mixed feature at non-
overlapping polyp regions, which is different from the mixup
method that directly conducts linear combination. This modi-
fication prevents the feature of polyp regions being perturbed
and overwhelmed by the normal features in the mixed data,
thereby, explicitly adjusting the decision boundary at hidden
features. Then the MEMC loss can be computed by

For the MCMC loss, it minimizes the dissimilarity between
the confidence map calculated by mixup sample Cq(zp)
and the mixed confidence maps (C,(x;) and Cy(z;)) of two
original samples. We use the mean squared error to measure
the discrepancy:

Lyomeo = |ACs(x:) + (1 — M) Cs(z5) — Col(zm)|,- (6)

Through optimizing with MFMC and MCMC regularization
losses, the ThresholdNet thus can be deeply supervised with
the mixup samples at both feature and segmentation levels.

YCplzm)

)

Lyrme = ||¥e,(en) —

B. ThresholdNet

In this paper, we propose a ThresholdNet for polyp seg-
mentation to joint segmentation and threshold learning in a
robust way, as in Fig. 2. The following subsections present the
architecture and loss functions of the ThresholdNet in detail.

1) Network architecture: Our model is composed of a base
network (B), a segmentation (&) and a threshold (7)) branches.
The base network is constructed for feature extraction, map-
ping input image x to feature maps B(x). We utilize the
pre-trained parameters of ResNet-101 on ImageNet dataset to
initialize the base network, in order to alleviate the overfitting
problem caused by the limited training data. The subsequent
segmentation branch is a decoder to obtain the likelihood map
p = S(B(z)),p € [0, J"*H*2 In particular, the base net-
work and the segmentation branch constitute the extraordinary
DeepLabv3+ [34] backbone.

Even though existing deep learning-based methods [6]-[20]
can segment polyp regions with high accuracy, these methods
ignore the fact that different thresholds lead to varying re-
sults. Therefore, the further post-processing of the likelihood
map is necessary for attaining better performance [32]. To
adaptively learn a threshold map for each likelihood map, a
threshold branch, with the identical structure of the segmen-
tation branch, is introduced to be parallel to the segmentation
branch. The feature maps extracted from the base network
thus can be mapped to the threshold map p* = 7 (B(x)), p*
[0, 1]%*H <2 through the threshold branch. Then the predicted
likelihood map is subtracted by the threshold map to obtain the
final segmentation result, which can be represented by p’ =
p—p' = 8(B(x)) — T (B(z)). Hence, the generated threshold
map provides the pixel-level threshold value to calibrate the
final segmentation result, leading to a more accurate prediction
at regions with less confidence values.

The base network with segmentation branch (8 U &) and
the threshold branch (/) are constrained and optimized al-
ternatively by minimizing their individual segmentation and
threshold losses.

2) Segmentation loss: The segmentation loss £° is com-
prised of two commonly used loss functions, i.e., the binary
cross-entropy loss function and the Jaccard loss function:

LS = LgE T L?accar(i

(»')s

> yM(p')
i

> yiM
Syt M) —

)2
7

where p; indicates the probability of #* pixel being catego-
rized as polyp, and y € {0, 1}WXH denotes the corresponding
segmentation ground-truth. M (p") is a masking function to
transfer the continuous segmentation prediction to a soft mask,
and we utilize the sigmoid function as an approximation to
make it derivable, as in the following formulation

1 1
N o
M(p) - 1 o e_wp/ - 1 i e*W(P*Pt)’ (8)

== wilogp;+(1—
i

where w is a scale parameter ensuring M (p); approximately
equals to 1 when p; is larger than pf, or to O otherwise. We
set w as 50 and keep it consistent for all experiments.

3) Threshold loss: In order to optimize the threshold branch,
we comprehensively design a threshold loss, which is com-
prised of the cross-entropy loss function, the Jaccard loss
function and an edge-aware smooth regularization. Since there
is no ground truth of the threshold map provided in the training
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dataset, a TMSG module is devised to produce the supervision
for the threshold map learning.

Threshold Map Supervision Generator (TMSG). The
TMSG module integrates the likelihood map and the segmen-
tation label to attain the ground truth of threshold map %
Assuming the one-hot encoding form of segmentation label is
O(y) € {0,172 TMSG module can be formulated as

gt = d B s Ofy) =1;
p+me, otherwise,
WxH=x2

©)

where y* € [0,1] and m € (0,0.5) is a margin
coefficient to ensure the discrepancy of the threshold map
and the likelihood map. The intuition behind TMSG is to
ensure that the soft mask generated by Eg. 8 is the same
as segmentation label O(y) if substituting +* into p*. Hence,
with the supervision of the ground truth %, the learned
threshold map can provide precise pixel-wise threshold values
for discerning polyp versus normal class. The threshold loss
£7 can be formulated as

T T T T
L= LCE & E.Iaccard B E’Smooth,

S yM ()
4 t ‘
= — i log pi + (1 —
Xi:yz gpi + ( EythEM(p’)tfzsz(p/)z)
kA i #
+ (@} - e~ 10neil gt IOl
(10)

where Jy, and d, denote partial derivatives along with the hori-
zontal and vertical directions, respectively. The first item is the
cross-entropy loss, while the second item is the Jaccard loss. In
addition, we add the third item to regularize the smoothness
of the learned threshold map since the discontinuities often
occur at edges. With the optimization of the threshold loss,
the threshold branch can adaptively threshold the likelihood
map, thus polishing the final segmentation prediction.

C. Optimization

The solution to the ThresholdNet can be approximately at-
tained via the alternative search strategy, which commutatively
optimizes the involved parameters B, S and 7 as described
in Algorithm 1. More specifically, denote 5%, S* and 7% as
the optimization variables involved in the ThresholdNet at it-
eration & (k =0,1,2,...,), respectively, then our optimization
strategy in each iteration contains the following steps:
Update 5% and S* with fixed /*: This step aims to update
the base network and the segmentation branch. For original
input images, the likelihood map p is obtained with the
parameters B* and S¥, and the soft mask M (p') is derived
from p and 7*. Both p and M (i) are constrained to be similar
with the ground truth v, and the corresponding objective
function is computed by Eq. (7). In this case, the optimization
procedure can be represented by the following form:

BN SHH = min L9(BF, 85, T%,z,0). (1)

For mixup images, apart from the segmentation loss, two
regularization losses in Eq. (5) and Eq. (6) should also be

Algorithm 1 : Optimization

Input: Dataset (x,y)
Output: Likelihood map p, threshold map p°, segmentation
results p'
1: Initialize B with pre-trained parameters and randomly
initialize & and 7/
2: for k = 1:3:iter do
3:  Conduct image-level mixup on randomly selected im-
ages (xz;,2;) to obtain mixup data 2, by Eq. (1)
Calculate the deep features B(z;), B(x;) and B{z.,)
Conduct feature-level mixup on B{z;) and B(z;) to
obtain mixup feature B, (z) by Eq. (1)
for input = [z, T, Br(z)] do

7 if input = z; then

8: Calculate the confidence-guided mixup label ..,
by Eqg. (2)

9; Update parameters 5 and S by Hq. (11)

10: Update parameters 7 by Eq. (14)

11: else if input = z, then

12: Update parameters 5 and S by Hq. (12)

13: Update parameters 7 by Eq. (14)

14: else if input = 5,,,(z) then

15: Update parameters S by Eq. (13)

16: Update parameters 7 by Eq. (15)

17: end if

18:  end for

19: end for

involved for deep supervision. Hence, the optimization for
mixup images can be formulated as

Bk+1 A Sk+1 _ glﬁlg [ES(Bk,Sk, Tk, Tens ym)

+¢ - Lo (B*, S5, xm,ym) (12

+& - Laronc(B¥,S* 2o, vm)],

where ¢ and £ are trade-off parameters controlling the contri-
bution of MEMC and MCMC losses.

For mixed features, it passes through S* and 7% to attain
pand M (p), and the optimization process is defined as:

BN SH = min g L5(SF, T, Bra(2), ym),  (13)
where the weighting factor # is a hyper-parameter that adjusts
the contribution of mixed features.

Update 7% with fixed 55! and S*t': The goal of this step
is to update the threshold branch with B**+1 and S*+! updated
in last step. The optimization method for original input images
and mixup images are the same, which can be formulated as

Tk«l»l _ m]in ET(Bk+1,Sk+1,Tk,I,’y). (14)

For mixed features, 7% can be updated by the following

formulation:

TR = min - LT(STE, Brule), ym). (1)

Ultimately, the whole alternative search process of the
proposed method can be summarized as in Algorithm 1.
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TABLE |: Quantitative comparison of segmentation results for EndoScene and WCE polyp dataset. The small P-values (P <
0.001) calculated between our method vs. state-of-the-art methods in terms of Dice indicate the improvements are significant.

Datasets Methods Dice (%) Jac (%) Sen (%) Spe (%) Ace (%) F2 (%) p-value
DeepLabv3+ [34] 82523 74.927 82,299 99.306 96,444 82.023 1.21e-12
Vizquez et al. [6] 80.099 72320 78.986 99.439 96,296 79.061 3.05e-11
Zhou et al, [7] 79.842 71756 82,492 98.622 95.885 80.252 2.71e-9
EndoScene Fang et al. [9] 81.987 73.654 82.630 99.306 96,438 81.859 1.242-9
Qadir et al [12] 84.145 77369 84.575 99.328 96.877 83.433 5.71e-6
Wickstrgm ez al. [17] 81.867 74.542 82.130 99.286 96.643 81.731 1.36e-7
Ours 87.307 80.570 87.973 99.466 97.213 87.278 =
DeepLabv3+ [34] 79.110-£2.123  69.280£2.113  81.8324-2.136  98.613+0.2900  98.25040081  80.217+2.120  4.862-8
Vizquez et al. [6] 7342251304 64.11310.808  73.5624:2.199  99.01040.321 9796940355 73.04841.644  530e-11
Zhou et al. [7] 80.8114-1.791 7232641426  81.273+£1.916  99.1654-0.170  98.2651+0.337  80.8084-1.850  5.402-5
WCE Fang et al. [9] 75.106-£0.662  65.130-0.881  74.9604-0.877  99.3061-0.132 9711840574  74.55640.626  1.10e-11
Qadir et al [12] 82.9274-1.342 74.0964-1.513  85.84711.689 09858040304  98.18810.165 84.03141.461  3.23e4
Wickstrgm er @l [17] 78103422778  69.50242.289 78576+2.103 9916240094  98.248+0.243 7803312389  3.772-6
Ours 87.6879--1.038  79.8071-1.214 8847810868  90.08710.300  98.79410.112  88.267-0.951 -

V. EXPERIMENTS

We introduced the utilized datasets in subsection TV-A and
our experimental setup in IV-B. Then we compared our method
with the state-of-the-art methods on EndoScene and WCE
polyp datasets in IV-C. To clarify the validity of CGMMix
and ThresholdNet, we further conducted ablation experiments
on EndoScene dataset, as in subsection IV-D and IV-E.

A. Datasets

Two polyp image datasets were utilized in this study, and

two samples from different datasets are shown in Fig. 1.
EndoScene dataset: This dataset includes 912 images and
the corresponding pixel-wise labels, obtained from 44 videos
of 36 patients. We followed the standard setup for polyp
segmentation with 547 training, 183 validation, and 182 testing
colonoscopy images [6] based on the constraint that one
patient can not be in different sets.
WCE polyp dataset: Our WCE polyp dataset comprises 541
images, collected from the Prince of Wales Hospital with
Medtronics Pillcam wireless capsule endoscope (WCE). The
ground truths of the polyp regions were annotated by two
experts. This dataset was randomly split for fourfold cross-
validation.

B. Experiment Setup

Implementation details: Our method was implemented with
the PyTorch library. SGD was chosen for optimization with
a batch size of 16. We adopted polynomial learning rate
scheduling with the initial learning rate of 0.001, the power
of 0.9 and the maximum epoch number of 500. The threshold
coefficient ¢ in CGMMix was set to 0.3, and the margin
coefficient 2 in TMSG module was also set to 0.3. To further
enlarge the training dataset, we employed the online data
augmentation, including adding perturbation in HSV color
space, random horizontal flip, rotation from 0 to 180 degrees,
scale and crop. The augmented patches were then resized to
256256 for training.

Evaluation metrics: The performance of polyp segmentation
was evaluated by six commonly-used metrics, including Dice

similarity coefficient (Dice), Jaccard index (Jac), Sensitivity
(Sen), Specificity (Spe), Accuracy (Acc) and F2-score (I'2).
For these evaluation metrics, a higher value indicates a better
segmentation result.

C. Segmentation Performance

Since the base network and the segmentation branch consti-
tute DeepLabv3+ [34], we first compared the proposed method
with the backbone Deepl.abv3+. To verify the effectiveness
of our approach, we further compared it with state-of-the-
art polyp segmentation models [6], [7], [9], [12], [17]. Espe-
cially, the Deeplabv3+, UNet++ [7] and method in [12] were
initialized with the corresponding pre-trained parameters, and
then the whole segmentation networks were fine-tuned on the
two polyp datasets. For a fair comparison, we implemented
the network architectures of these methods and used the
same online data augmentation method for data preprocessing.
The quantitative performance of different methods on the
two polyp datasets are listed in Table I, and the qualitative
comparison results are illustrated in Fig. 4.

1) Results on EndoScene dataset: The weighting factors ¢,
& in Eq. (12) and # in Eq. (13, 15) are empirically set as
0.5, 0.2 and 0.5 for the training of EndoScene dataset. As
in Table I, our method shows promising performance with
a Dice of 87.307% and a Sen of 87.973% and exhibits
a significant improvement (P < 0.001) of 4.784%, 5.674%
in Dice and Sen compared with DeepLabv3+. This is be-
cause that the threshold branch in the ThresholdNet provides
pixel-level threshold value to amend the predicted results in
error-prone regions. In addition, the CGMMix enriches the
limited training samples and enhances the linear behavior
of the ThresholdNet. Notably, the considerable improvement
in Sen reveals that CGMMix can greatly alleviate the class
imbalance problem by adaptively luring the decision boundary
away from the under-represented polyp class. Hence, it can
be concluded that the proposed ThresholdNet together with
CGMMix contributes to the favorable performance promotion.
Moreover, it is worth noting that the proposed approach
achieves better performance than state-of-the-art methods [6],
[7], [9], [12], [17]. Specifically, the proposed method possesses
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EndoScene

WCE polyp

to right are the test images (1% col), results of state-of-the-art methods [6], [7], [9], [12], [17] (2””! —

THEEEEENN
¢ Hﬂﬂﬂﬂﬂﬂﬂ

Fig. 4: Qualitative comparison of segmentation results by different methods for EndoScene and WCE polyp dataset. From left

G eol), results of our

backbone Deeplabv3+ [34] (7% col), results of our method (8% col), and ground truth (9% col).

superior capability for polyp segmentation with increments
of 8.250%, 8.814%, 6.916%, 3.201%, 6.028% in Jac and
B.987%, 5481%, 5.343%, 3.398%, 5.843% in Sen compared
with methods [6], [7], [9], [12], [17], respectively.

The 1% — 4** rows in Fig. 4 visualizes four polyp images
and the corresponding segmentation results derived from meth-
ods in [6], [7], [9], [12], [17], [34] and our method. It can be
observed that compared with other baselines, the predictions
of our method have much fewer false negatives. For example,
other methods tend to ignore fine structures (1** row) and
can not tackle the huge variances exhibited in a polyp (27¢ —
37¢ rows), while our approach can automatically pinpoint
these error-prone regions. This may be ascribed to the effect
of CGMMix, which can adaptively threshold the soft mixup
label and induce the adjustment of the decision boundary.
Indeed, this adaptive adjustment can prevent unseen under-
presented polyp samples from shifting across the decision
boundary. In addition, other methods tend to category specular
reflections as the polyp regions as in 4% row due to the
visual similarity, while our approach can automatically remove
these over-segmented regions. We conjecture the reasons are:
the introduced threshold branch can rectify the segmentation
results, and the enriched information by CGMMix enhances
the feature representation capability of the ThresholdNet.

2) Results on WCE polyp dataset: The hyper-parameters ¢,
g and 7 are all set as 0.1 for WCE polyp segmentation.
We presented the results on WCE polyp dataset using the

mean and the standard deviation of evaluation metrics in Table
1. Due to the relatively lower resolution, polvp regions in
WCE images exhibit ambiguous boundary (5** row) and high
degree of visual similarity among polyp and normal tissues
(7t — 8™ row) as in Fig. 4. Qur method can still perform
well with a Dice of 87.879% and a Sen of 88.878% in
such dilemma. Moreover, our method demonstrates superior
segmentation performance in comparison to methods [34], [6],
[7], [9], [12], [17] with statistically significant increments (P
< 0.001) of 8.769%, 14.457%, 7.068%, 12.773%, 4.952%,
9.776% in Dice score. The 5% to 8" rows in Fig. 4 presents
typical segmentation results of WCE polyp images, for a
quantitative comparison of these different methods.

D. Ablation Analysis on CGMMix

1) Effectiveness of CGMMix: For in-depth analysis of CG-
MMix, we designed the following four experimental settings.

» DeepLabv3+ [34]: it serves as our backbone network,
and this network architecture is separately trained with
different data augmentation methods as follows, for a fair
comparison of different methods.

« w/ Mixup [23]: it conducts linear combination on input
images and labels.

+« w/ Asymmetric mixup [29]: the linear combination is
only implemented on input images, and the corresponding
labels are derived with a threshold of ¢ = 0.3.
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TABLE Il: Comparison results of polyp segmentation under
different data augmentation techniques.

Train

Test

* %

Logit center

.

Boundary in logit space

10

Methods Dice Jae Sen Spe Ace £
DeepLabyv3+ [34] 8252 7493 8230 9931 94644 8202
w/ Miup [23] t 8355 7651 8360 9930 94644 8308
w/ Asymmetric mixup [20] T 84.69 7744 8542 0033 9673 84.63
w/ CGMMix 8543 7841 8579 9945 9689 85.24
Ours 8731 80.57 8797 9947 9721 8128

1 P-value ({CGMMix vs. Mixup): 0.005;

} P-value (CGMMix vs. Asymmetric mixup): 0.028.

« w/ CGMMix: our proposed data augmentation method
with a threshold of £ = 0.3.

The comparison results in Table II show that the proposed
CGMMix method performs favorably against the mixup and
asymmetric mixup with significant improvements (P < 0.05),
demonstrating the good capability of CGMMix to enrich lim-
ited training dataset. Among these metrics, Sen represents the
percentage of polyp pixels that are correctly classified, which
is more clinically relevant and can accelerate the screening
examination [32]. Since the area of polyp is smaller than that
of normal tissues, existing methods [6]-{22] usually exhibit
a poor sensitivity in polyp segmentation. The CGMMix was
confirmed to have an inherent capability of dealing with this
class imbalance problem and achieved a prominent Sen of
85.79%, which shows increments of 3.49%, 2.19% in com-
parison to the DeepLabv3+, mixup, respectively. The proposed
CGMMix was verified to be superior than asymmetric mixup
[29] with an increment of 0.97% in Jac. The improvement
is due to that the proposed confidence-guided mixup label is
more precise than the asymmetric label that simply thresholds
original mixup label with a certain constant. In addition, the
feature-level mixup and two consistent regularizations enable
the comprehensive and sufficient utilization of mixup data.

2) Visualization of data distribution: To demonstrate the ef-
fectiveness of CGMMix, we then visualized the logit distri-
bution of Deeplabv3+ [34], mixup [23], Asymmetric mixup
[29] and our CGMMix for comparison, as in Fig. 5. The 2-
dimensional logit distribution can reflect the feature distribu-
tion in high dimensional space since they are linearly mapped
from features. From the logit visualization of DeepLabv3+ and
mixup, we can observe that the logit activations of normal
pixels from the training and testing sets display an obvious
gap in terms of the logit center, which reveals the overfitting
problem exists in polyp segmentation. In addition, many logit
activations of pixels in polyp regions shift significantly towards
or even across the decision boundary in Deeplabv3+ and
mixup methods. This shift can cause false negatives and
result in the under-segmentation of polyps. Notably, as in the
logit distribution of CGMMix, the logit centers of training
and testing sets in the polyp class both stay away from
the boundary. This observation indicates that CGMMix can
asymmetrically and adaptively adjust the decision boundary
in high dimensional feature space, which significantly reduces
logit shift of unseen polyp pixels and leads to the large
improvement in sensitivity. Moreover, it is clear that our logit
activation centers from the training and testing sets tend to
be similar, demonstrating the generalization ability of the
proposed CGMMix.

5| 5| 5 E
n S

Lo —m o @ 4n “har - 1 P T T R araw far —m o @ 4
z 20 20 z

Deeplabvd | [44] Mimup [23] Asymmetric mixup [29] CGMMix
Fig. 5: Activations of the classification layer (zg for normal
logit, z; for polyp logit) when processing polyp (top) and
normal (bottom) pixels in EndoScene dataset.
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Fig. 6: CGMMix with threshold varying from 0.1 to 0.6.

3) Analysis on the threshoid t: A lower threshold ¢ of
CGMMix in Eq. (2) often results in a larger number of
pixels belonging to polyp class, further leading to a rela-
tively balanced class distribution. We conducted experiments
to evaluate the performance of CGMMix with different ¢,
and the corresponding Ace, Jac, Sen and Spe curves are
shown in Fig. 6. Obviously, aggravating the class imbalanced
distribution (¢ = 0.6) further deteriorates the sensitivity of
the model. In the meanwhile, choosing a lower ¢ = 0.1
achieves a higher sensitivity, since a lower ¢ can lure the
decision boundary away from the polyp class and increase the
corresponding logits area. Ace and Jae are comprehensive
metrics that measure the overall performance of CGMMix
without being affected by the class imbalance problem. From
the below subfigure in Fig. 6, the performance of CGMMix
increases first and then decreases with ¢ varying from 0.1 to
0.6. Properly choosing the value of ¢ can reach a trade-off
between sensitivity and specificity and further promote the
segmentation performance.

4) Ablation study for each component in CGMMix: To eval-
vate the contributions of different components devised in the
CGMMix, we first quantified the confribution of image and
feature-level mixups by seriatim ablating the multiple mixups,
as shown in Table III. In particular, we studied different
variants of CGMMix, including: 1) “Baseline” corresponds to
the baseline method without using CGMMix; 2) “w/ image-
level mixup” embraces in the image-level mixed samples
for training; 3) “w/ feature-level mixup” incorporates mixed
feature maps for the optimization of segmentation branch.
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TABLE [ll: Comparison results of image and feature-level
mixups in CGMMix.

Methods Dice Jac Sen Spe Ace F2

Baseline 82,52 7493 8230 9931 9044 8202
w/ image-level mizup 8478 7753 8442 9942 0688  84.23
w/ feature-level mixup  84.84 7770 8438 9945 0682 8417

CGMMix 8543 7841 8579 9945 96.89 8524

TABLE IV: Comparison results of MEMC loss and MCMC
loss in the image-level mixup of CGMMix.

Methods Dice Jac Sen Spe Ace F2
wio MEMC  85.14  77.86 85091 9934 9680 §5.05
wio MCMC 8509 78.08 84.97 9943 0943 84.54

CGMMix 8543 7841 8579 9945 9650 8524

The image-level mixup was demonstrated to be effective in
improving the generalization of baseline model with incre-
ments of 2.60%, 2.12% in Jac and Sen, respectively. We
also verified the capability of the proposed feature-level mixup
(4™ row with reference to the result of baseline (279 row).
The comparison results show that the feature-level mixup
method promotes the performance of baseline model, with a
relative improvement of 2.32% from 82.52% to 84.84% in
Dice score for polyp segmentation.

In the proposed CGMMix, two consistency regularizations,
MEMC and MCMC losses, were developed to optimize the
image-level mixup. Therefore, we analyzed the individual
components of objective functions in CGMMix, MFMC loss
in Eg. (3) regularizes the feature map of the mixed image to
be similar to the combination of the feature maps derived from
two original images, and MCMC loss in Eq. (6) minimizes the
dissimilarity between the confidence map calculated by mixed
image and the mixed confidence maps of two original samples.
The corresponding ablated results were listed in Table TV. It
is evident that both MFMC and MCMC losses contribute to
the performance boosts of CGMMix. In particular, discarding
MBEMC loss led to a worse performance with a relative
reduction of 0.55% in Jac score, and the elimination of
MCMC resulted in a degradation of 0.82% Jac score.

5) Visualization of confidence map: To qualitatively verify
the proposed CGMMix data augmentation method, we visu-
alized the learned confidence map 'y (z,,), likelihood map p
of CGMMix images and their corresponding labels, as in Fig.
7. Though the feature representation of polyp is weakened by
normal tissues in the mixed images ((¢) cal), the corresponding
region should be diagnosed as a polyp in clinical practice, and
the generated confidence-guided mixup label ({g) col) is con-
sistent with the diagnosis from clinicians. From the confidence
maps ((d), (&) col), it is clear to see that DeepLabv3+ tends
to make the wrong decision arcund the boundaries of polyp,
ie., emror-prone regions. Therefore, MCMC loss emphasizes
the constraints on these error-prone regions, thereby boosting
the performance of CGMMix method.

E. Ablation Analysis on ThresholdNet

1) Effectiveness of Threshold: To quantify the performance
of ThresholdNet, we designed the ablation experiment, and
the corresponding results are listed in Table V. We first

Fig. 7: Mustration of CGMMix: (a, b) original images to be
mixed; (c) the CGMMix image z,, generated under the setting
A = 0.5; (d) the confidence map Cs(zy); (e) the ground
truth of confidence map; (f) the likelihood map p; (g) the
confidence-guided mixup label.

TABLE V: Ablation study on the testing set of EndoScene
dataset in terms of margin (nz) parameter in ThresholdNet.

Methods Dice Jac Sen Spe Ace F2
DeepLabv3+ [34] §252 7493 8230 9931 9644 8202
w/ TMSG 8441 7753 8474 9939 9674 8406
wi ﬁ‘?mmwd & ﬁ?ﬁmwd 86.08 79.04 8643 09946 9696 8585
ThresholdNet (m=0.1) 86.66 T79.81 8645 09953 9703 8622
ThresholdNet (m=02) 8659 7980 $7.0¢ 9950 9710 8638
ThresholdNet (m=0.3) 8685 7997 8614 99.5¢ 9711 8613
ThresholdNet (m=0.4) 86.64 7970 8609 0954 9705 8603
Curs 37,31 80.57 8797 0947 9721 3728

investigated the effect of the threshold branch and the TMSG
module (37¢ row), and all evaluation metrics increased in
comparison to the baseline DeepLabv3+ [34] (27 row). This
result proves the advantage of the threshold branch and the
TMSG module, which can automatically learn the correct
threshold map to help the segmentation branch discerning
polyps versus normal ones. Then the reciprocal constraints,
e, L3, 0arg and L5 were added to demonstrate the
effectiveness of introducing interaction between two branches
(4" row), which shows increments of 3.56% in Dice and
4.11% in Jac compared with DeeplLabv3+. Through these
bidirectional constraints, the threshold branch is still able to
learn the adaptive threshold map dvnamically by referring to
the likelihood map in E:{mwd calculation, even though no
direct supervision is provided. In conjunction with these two
approaches and choosing a margin of m = 0.3, the polyp seg-
mentation performance is boosted to overall Dice of 86.85%
(6% row), far outstripping our baseline DeepLabv3+ with an
increment of 4.33% in Dice. This promising improvement
demonstrates the good capability of ThresholdNet to rectify
final segmentation results.

2) Visualization of threshold map with varying margin m: We
conducted comparison experiments to explore the sensitiveness
of the hyper-parameter m in the TMSG module, and the
corresponding results were listed in 5% — 8% rows of Table V.
It is apparent that the results are not very sensitive to the value
of margin 2, demonstrating the stability and robustness of the
ThresholdNet. To further evaluate the proposed ThresholdNet,
we visualized the learned threshold maps with m varying
from 0.1 to 0.4, as in Fig. 8. Obviously, a larger value of
e results in a more discrepant threshold map compared with
the corresponding likelihood map.
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TABLE VI: Performance of our method on different segmen-
tation baseline networks.

Methods Dice Jac Sen Spe Acc F2
UNet [33] 7607 6712 7576  99.05 9563 7521
Ours (UNet) §334 7559 8357 9931 9656 8305
P-value <0001 <0001 <0001 0001 <0001 <0001
SegNet [36] 8187 7454 8213 9920 9664 8173
Ours (SegNet) 8451 7731 8405 9934 9677 8389
P-value <0001 0001 0041 0004 0048 0.017
OCNet [37] 8225 7408 8412 9911 9636 8236
% Ours (OCNet) 8527 7814 8564 9939 9677 8456
(a) (b) (© (d) (e) o P-value <0001 <0001 0026 <0001 <0001 <0001
Fig. 8: Mlustration of threshold maps: {(a) the input image with DenseASPP [38] 8560 7873 8510 9946 0696 8470
green contours outlining the polyp regions; (b) the likelihood Ours,(DenseASERY, 8780 B105 8826 A Al ST7H
, , P-value <0001 <0001 0011 0046 0001 <0001
map generated under the setting m = 0.3; (c-g) predicted Deeplabyds (3] 8252 7493 8230 9931 964 5202
threshold maps with margin 2 equals to 0.1, 0.2, 0.3, 0.4. Ours (DecpLaby3+) 8731 8057  §797 9947 9721  §7.28
P-value <0001 <0001 <0001 0001 <0001 <0001
20
B0
70
£ : ; ; ;
%: Fig. 10: Hlustration of failure cases in EndoScene (a, b) and
60y 2% WCE polyp (¢, d) datasets. Red and green contours outline
—&— Vazquez et al.[6] O
_ —&— Zhou et.al.[7] the ground truth and our prediction of polyp boundary.
—&— Fang et.al.[9]
501 ; . ; : :
w3 Qadlir et. al. [12] B. Comparisons with Different Baseline Networks
—h— Wickstram et.al [17]
” —&— Ours The proposed ThresholdNet with CGMMix data augmenta-
T 1374 274 (21) 410(3/4) 547 (4/4) tion method was performed on the baseline of Deeplabv3+

Fig. 9: Comparison results with different numbers of training
images. “274 (2/4)" indicates 274 images (2/4 proportion of
EndoScene training set) are involved for optimization.

V. DISCUSSION

A. Different Numbers of Training Images

Adequate training images are essential to the optimization
of deep neural networks, which can mitigate the overfitting
problem of the learned model. To discuss the generalization
of our method, we first assessed the performance of state-of-
the-art polyp segmentation models [6], [7], [9], [12], [17] and
the proposed model trained with different numbers of training
images. The training samples were varied from 1/4 to 4/4 of
the total training set (547 images) in increments of 1/4, and
we drew the Dice curve for comparison, as shown in Fig. 9. In
general, our method shows a relatively stable performance with
different training data settings, demonstrating the robustness of
our approach. Moreover, it is clear that the proposed method
consistently performs better than state-of-the-art methods in
different number of training data settings. When the number of
training images is small {137 images), other competed methods
exhibit unsatisfactory performance as a result of overfitting
problem. On the confrary, our method obtains a promising
performance and possesses superior generalization ability for
polyp segmentation with 25.69%, 18.57%, 15.62%, 15.63%,
32.73% increments in Dice compared to methods [6], [7], [9],
[12], [17]. This observation demonstrates that the proposed
method can help prevent overfitting effectively. Notably, our
approach is highly promising in medical image segmentation
where pixel-level segmentation annotations are limited.

[34] in afore experiments. To verify the effectiveness and
generalization of the proposed approach, we further integrated
the proposed method to other segmentation baselines: UNet
[35], SegNet [36], OCNet [37] and DenseASPP [38]. Note
that OCNet and DenseASPP were with the backbones of
ResNet50 and DenseNetl21, and these two backbones were
initialized with pertained parameters. Table VI summarizes
the overall comparison results on different baseline models.
We can observe that our approach can significantly improve
the results over different baselines, UNet, SegNet, OCNet,
Dense ASPP, Deeplabv3+, with increments of 8.47%, 2.77%,
4.05%, 2.32%, 5.64% in Joc and 7.84%, 2.16%, 2.50%,
3.09%, 5.26% in F'2 scores, respectively. The statistical sig-
nificance P-values derived by the paired t-test reveal that
the proposed approach is an efficient strategy to boost the
performance of existing segmentation networks. Moreover,
compared with the baseline model DeepLabv3+, our method
only requires 1.23 times floating-point operations (FLLOPs) and
1.02 times parameters (i.e., 2.74 x 10'® FLOPs, 6.05 x 107
parameters), demonstrating the computational efficiency.

C. Failure Cases

Although the proposed method shows promising perfor-
mance, it does make erroneous predictions in certain cases, as
in Fig. 10. Sometimes polyp and normal tissues share high de-
gree similarity of appearance, vielding wrong predictions, such
as Fig. 10 (a, ¢). The proposed method may give biased predic-
tions at shadow regions (Fig. 10 (b)) or ambiguous boundaries
(Fig. 10 {d)). Auxiliary angular contrastive constraint [39] will
be further explored to enhance the discriminative ability and
improve the polyp segmentation performance.

0278-0062 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standardsfpublications/rights/index.html for more information.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 21,2021 at 10:07:11 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOT 10.1108/TMIL.2020. 304684 3, IEEE

Transactions on Medical Imagin

12

g
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2017

VI. CONCLUSION

Automatic polyp segmentation is a challenging task due
to the limited pixel-wise annotated dataset and the class
imbalanced data distribution. Moreover, thresholding the like-
lihood map with an eclectic constant to obtain final seg-
mentation results is problematic. In this paper, we propose
a ThresholdNet with CGMMix data augmentation method to
tackle the aforementioned issues. CGMMix conducts manifold
mixup at multiple levels for data augmentation and is able
to reach a trade-off between sensitivity and specificity with
the confidence guidance. The MFMC and MCMC losses are
designed to ensure the robust training of the mixup data.
The proposed ThresholdNet collaborates the segmentation and
threshold learning in a robust way, i.e., these two branches are
reciprocally propagated and constrained throughout the whole
learning process. Extensive experiments on two polyp seg-
mentation datasets demonstrate the superiority of our method
compared with state-of-the-art methods. In addition, although
our model is built upon the specific application of polyp
segmentation, the proposed approach is a generic and general
strategy that could be flexibly applied to extensive medical
image segmentation tasks.
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