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Background & Aims: The differentiation of distinct multifocal
hepatocellular carcinoma (HCC): multicentric disease vs. intrahe-
patic metastases, in which the management and prognosis varies
substantively, remains problematic. We aim to stratify multifocal
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HCC and identify novel diagnostic and prognostic biomarkers by
performing whole genome and transcriptome sequencing, as part
of a multi-omics strategy.
Methods: A complete collection of tumour and somatic speci-
mens (intrahepatic HCC lesions, matched non-cancerous liver
tissue and blood) were obtained from representative patients
with multifocal HCC exhibiting two distinct postsurgical
courses. Whole-genome and transcriptome sequencing with
genotyping were performed for each tissue specimen to con-
trast genomic alterations, including hepatitis B virus integra-
tions, somatic mutations, copy number variations, and
structural variations. We then constructed a phylogenetic tree
to visualise individual tumour evolution and performed func-
tional enrichment analyses on select differentially expressed
genes to elucidate biological processes involved in multifocal
HCC development. Multi-omics data were integrated with
detailed clinicopathological information to identify HCC bio-
markers, which were further validated using a large cohort of
HCC patients (n = 174).
Results: The multi-omics profiling and tumour biomarkers could
successfully distinguish the two multifocal HCC types, while
accurately predicting clonality and aggressiveness. The dual-
specificity protein kinase TTK, which is a key mitotic checkpoint
regulator with links to p53 signaling, was further shown to be a
promising overall prognostic marker for HCC in the large patient
cohort.
Conclusions: Comprehensive multi-omics characterisation of
multifocal tumour evolution may improve clinical decision-mak-
ing, facilitate personalised medicine, and expedite identification
of novel biomarkers and therapeutic targets in HCC.
� 2014 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
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Introduction

Hepatocellular carcinoma (HCC) is ranked as the sixth most com-
mon malignant cancer and is the third leading cause of cancer-
related death worldwide [1,2]. HCC patients often present with
multiple intrahepatic tumours. Although standardised guidelines
for multifocal HCC and indications for surgical removal are avail-
able [3–6], surgical decision-making is still complicated by the
difficulty in accurately predicting future tumour development,
recurrence of the primary lesion and/or metastatic spread. These
uncertainties also make prognostication after surgery to be very
difficult for individual patients.

Speculatively, multifocal HCC may arise either synchronously,
and metachronously, as primary tumours (multicentric occur-
rence) or develop as a consequence of intrahepatic metastases
of the same primary cancer (Supplementary Fig. 1A) [7], yet
molecular mechanistic underpinnings and tools to define and dis-
criminate these two types are still lacking. As the management
and prognosis in these different scenarios varies substantially,
it is important to obtain the correct diagnosis. However, accurate
stratification of multifocal HCC has not been achieved [8,9],
despite the recent development of several evaluation approaches
(i.e., pathological examination, profiling of integrated hepatitis B
virus (HBV) DNA by PCR and Southern blotting, loss-of-heterozy-
gosity analysis of specific DNA microsatellite loci) to differentiate
these two development patterns. Clinical decision-making and
theoretical considerations are therefore used to dictate treatment
strategies for multifocal HCC.

The emergence and rapid progress of next-generation
sequencing (NGS) has enabled comprehensive characterisation
of cancers, including HCC [10–12]. This approach has allowed
the identification of new molecular markers, as well as defining
underlying biologic mechanisms, which facilitate the stratifica-
tion and characterisation of tumours [13,14].

In this study, we selected representative patients with HBV-
related multifocal HCC who underwent tumour resection and
exhibited distinct postsurgical courses. These samples were sub-
jected to NGS to obtain complete data sets for each patient. We
then performed multi-omics analyses integrating genomics and
transcriptomics, and further correlated these with the clinico-
pathological data. We sought to comprehensively decipher
molecular differences between the two multifocal HCC models
and identify molecular markers for diagnosis, prognosis and,
potentially, therapeutic targets.
Materials and methods

Patients and clinical samples

Two representative HBV-HCC patients who had tumour resection were selected
for NGS studies. Each patient underwent the same pathologic evaluation on all
tumours.

In validation studies, 174 pairs of frozen HCC and non-cancerous livers were
randomly selected from HBV-HCC patients with single or multifocal HCC who had
undergone hepatectomy at PUMCH between September 1, 2003 and February 28,
2012.

Detailed clinicopathological information is listed in Supplementary Tables 1
and 2, respectively. Sample collection is described in Supplementary data.

The study was approved by the Ethics in Research Committee of PUMCH.
Written informed consent was obtained from all study participants.
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Whole-genome sequencing, Poly(A) RNA sequencing (RNA-Seq), and SNP Genotyping

Whole-genome sequencing and RNA-Seq were performed on the Illumina
HiSeq™ 2000 platform (Illumina, San Diego, CA), and the sequencing data were
deposited at the European Genome-phenome Archive (EGA, http://www.ebi.a-
c.uk/ega/), which is hosted by the EBI, under the accession numbers
EGAS00001000325 and EGAS00001000372 respectively. DNA libraries were also
genotyped using the Genome-Wide Human SNP 6.0 array (Affymetrix, Santa
Clara, CA). Microarray data were submitted to the ArrayExpress Archive (http://
www.ebi.ac.uk/arrayexpress/) under the accession number E-MEXP-3705. Fur-
ther details are outlined in Supplementary data.

PCR, Sanger sequencing, and Quantitative real-time PCR (qRT-PCR)

Validation analyses were carried out as described previously [15] and detailed in
Supplementary materials and methods.

Data analyses

NGS data (948.49 Gb in total, Supplementary Table 3) were comprehensively ana-
lysed using appropriate analytical tools. Multi-omics data analyses are detailed in
Supplementary data and pipelined in Supplementary Fig. 2.

Statistical analyses

All statistical analyses were performed using SPSS 17.0 software (SPSS Inc.,
Chicago, IL). For statistical comparisons, a one-way analysis of variance, v2 test,
Fisher’s exact test, Student’s t test, or Mann-Whitney U test was performed when
appropriate. Recurrence-free survival (RFS) was calculated from the date of
tumour resection until detection of the first HCC recurrence, death, or the last fol-
low-up. Overall survival (OS) was defined as the time between surgery and death
or the last follow-up examination. Patients who were lost to follow-up or died
from causes unrelated to HCC were considered as censored events. Survival
curves were analysed by the Kaplan-Meier method and compared with the log-
rank test. Independent factors for RFS or OS were evaluated by multivariate
Cox proportional hazards regression analysis. Significance was defined as p <0.05.
Results

HBV integrations and clonality of multifocal HCC

Based on clinicopathological evaluations and postsurgical out-
comes (Supplementary Fig. 1, Supplementary Table 1), we identi-
fied two patients with distinct multifocal HCC. Patient I (PI) who
had cirrhosis and multifocal, poorly differentiated HCC died of
recurrent disease at three months after resection. In contrast,
Patient II (PII) was non-cirrhotic and presented with well-differ-
entiated multifocal HCC, with no recurrence at two years after
surgery. Therefore, we hypothesised that PI had intrahepatic
metastases while PII had synchronous primary tumour develop-
ment, with no spread or metachronous lesions. Tissues from mul-
tiple lesions for each patient (PI-P, PI-M1, PI-V, PII-L, PII-R),
adjacent non-cancerous liver controls (PI-N, PII-N), and periphe-
ral blood (PI-B, PII-B) were used for NGS followed by PCR valida-
tion. Two additional satellite lesions from PI (PI-M2, PI-M3) were
also used for validation.

Initially, HBV integration patterns into the respective host
genome were evaluated using whole-genome sequencing data.
Profiling of HBV integration in these two patients was found to
be distinctly different. A single integration site in the HCC carried
by PI was noted to be associated with a 3209 bp event confirmed
by PCR to be at the intergenic region of 3q26.1 in all tumours
(Fig. 1A); clearly suggesting a monoclonal origin of PI metastases.
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Fig. 1. Differential HBV integrations in different HCCs. (A–C) As predicted, the only 3209 bp HBV integration in 3q26.1 of PI (A) and two select integrations in PII: the
2291 bp integration at the first intron of DAG1 in 3p21.31 of PII-R (B) and the 2560 bp integration in 5p15.33 of PII-L (C). Putative integrations were validated by PCR
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In contrast, among four totally different integration sites
noted in PII tumours, two were validated exclusively in PII-L
and the other two were only seen in PII-R. These data were indic-
ative of HBV integration in two distinct tumour-initiating clones
(Fig. 1B and C, Supplementary Fig. 3). Notably, the 2560 bp inte-
gration in 5p15.33 of PII-L, which combines HBVgp3 and TERT
(telomerase reverse transcriptase), commenced at the sixth
nucleotide of the TERT open-reading frame. This is the only event
that would potentially result in a novel in-frame TERT initiation
codon leading to differential expression of TERT (Fig. 1C). This
prediction was further validated by RNA-Seq and qRT-PCR analy-
ses, showing a 27-fold increase in TERT mRNA levels in PII-L when
contrasted to PII-R (Fig. 1D).

Taken together, HBV integration data above suggest different
patterns of tumour clonality to explain the different manifesta-
tions of the multiple tumours in these two patients.
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Genomic alterations and aggressiveness of multifocal HCC

HBV integrations alone might not fully predict the clonality of
multifocal HCC, as subsequent genomic alterations might have
evolved independently from one another after metastases. Thus
next, genomic alterations by mutational analyses were further
used to assess individual tumour development and progression
pattern.

First, somatic mutations inclusive of substitutions (Substitu-
tion) and small insertions/or deletions (Indel) were examined.
Overall, ratios of non-synonymous substitution rate (Ka) to syn-
onymous substitution rate (Ks) are PI-M1 (1.49) >PI-V (1.17)
>PI-P (0.96) >PII-R (0.83) >PII-L (0.81) (Supplementary Table 4),
suggestive of a substantively higher positive Darwinian selection
conveying selective advantages on cancer subclones [16] in PI
tumours. Additionally, further mutations (albeit not within the
4 vol. 61 j 840–849
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coding sequence (CDS) regions overlapping with tumours’ muta-
tions) were noted in PI-N, when compared to PII-N where mini-
mal mutations were noted (Supplementary Fig. 4,
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terns in all regions (including coding and non-coding genic
regions, and intergenic regions) were observed among all tumour
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tissues (Fig. 2A, Supplementary Fig. 4, Supplementary Table 4). In
striking contrast, the two HCC tumours in PII had distinct
mutation profiles (Fig. 2A, Supplementary Fig. 4). Further KEGG
(Kyoto Encyclopedia of Genes and Genomes) [17] pathway
enrichment of CDS mutations revealed significant enrichments
of p53 signaling in all PI tumours, whereas no critical
cancer-related pathways were enriched in the PII tumours
(Supplementary Tables 5–8).

Second, copy number variations (CNVs) were assessed by
analysing whole-genome sequencing and SNP genotyping data.
As shown by Circos [18] plots in Fig. 2B, comparable results were
obtained from both approaches. In PI, four regions with large
deletions (4q12-4q35.2, 12p13.33-12p11.1, 16p13.3-16p11.2,
and 17p13.3-17p11.2) and one amplified region (8p11.1-
8q24.23) were detected in all tumours (PI-P, PI-M1, and PI-V)
but not in PI-N. Moreover, the amplification in chromosome 8
and deletions in chromosomes 12 and 17 were more substantial
in PI-M1, whereas deletions in chromosomes 4 and 16 were more
profound in PI-V, suggesting that tumour subclones further selec-
tively mutated during metastasis (Fig. 2B, Supplementary Table 9).
Such examples of whole chromosome instability are characterised
by aneuploidy, which is a major form of genomic instability
observed in HCC and may promote tumourigenesis [19].

In PII, two large deletions in 8p23.3-8p12 and 21q11.2-
21q22.3 were only noted in PII-L and two amplifications in
10p15.3-10p11.1 and 17q11.1-17q25.3 were exclusive for PII-R,
implicative of two independent tumourigenic processes (Fig. 2B,
Supplementary Table 10), as inferred by the different HBV inte-
gration sites.

In parallel, genomic structural variations (SVs) were analysed
and further validated by PCR and Sanger sequencing. A total
of 13 and 26 SVs were identified in PI and PII, respectively
(Supplementary Tables 11 and 12) and examples are shown in
Fig. 2C and D and Supplementary Fig. 5. SV patterns in all tissues
recapitulate, to a great extent, their CNV patterns.

Lastly, a phylogenetic tree was constructed to predict the
temporal development of each tissue, regardless of their germline
differences (Fig. 2E). Three of the metastatic tumours of PI
(PI-M1-3), in close proximity, were phylogenetically most distant
from the putative germline, when compared to other tissues
(PI-P, PI-V, or PI-N). In comparison, patterns of the two tumours
in PII were distant from germline and also from each other, impli-
cative of synchronous development of distinct clones. More
intriguingly, Fig. 2E also demonstrated how PI tumours appear
to have sequentially developed from the primary tumour (PI-P)
first to the portal vein tumour thrombus (PI-V), and then to the
satellite metastatic lesions (PI-M1-3). These data clearly explain
the genomic similarities of all PI tumours and imply that these
intrahepatic lesions spread via the portal venous blood, which
is the most common type of HCC metastasis [20].

Transcriptomic analyses of multifocal HCC

To expand on the genomic studies, we next performed RNA-Seq
followed by transcriptomic analysis to profile protein-coding
gene expression in HCC. Overall, mRNA expression levels of
genesfalling within the large CNV segments strongly correlated
with the respective copy numbers (Supplementary Fig. 6A,
Supplementary Tables 9 and 10). We also observed that associa-
tions of the differentially expressed genes between the PI
tumours were more pronounced than those of PII-L and PII-R
844 Journal of Hepatology 201
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(Supplementary Fig. 6B). These data are indicative of genetic
similarities between metastases and the primary HCC in PI.

Next, gene sets from Gene Ontology (GO) were enriched based
on differentially expressed genes and were visualised by Cyto-
scape [21] plugin Enrichment Map [22]. As noted, several func-
tion modules, such as immune and inflammatory responses,
coagulation, and normal liver functions (inclusive of amino acid
and lipid metabolism, carbohydrate biosynthesis, and drug
metabolism), were deregulated in all tumours (Fig. 3, Supplemen-
tary Table 13).

In general, the vast majority of functional changes in all PI
tumours were comparable. We noted major changes in coenzyme
metabolism and energy generation via mitochondrial oxidative
phosphorylation. PI tumours further exhibited perturbations of
carbohydrate catabolism and aerobic glycolysis, associated with
increases in nucleic acid metabolism, protein translation and
transport, macromolecular complex assembly, cell cycle and cell
proliferation, and cell migration. Moreover, upregulation of genes
participated in cytoskeletal remodelling and extracellular matrix
organisation, considered essential for metastasis, were exclu-
sively observed in PI-M1.

In contrast, distinct patterns of transcriptomic dysregulation
were noted in each lesion in PII tumours albeit with some exist-
ing overlap (Fig. 3).

Functional changes in both PII tumours were relatively trivial,
with the majority leading to decreased gene activities. Moreover,
neither tumour in this patient displayed any suggestion of the
molecular signatures of metastasis, observed in PI. These data
are suggestive of non-invasive phenotypes of PII tumours emerg-
ing from distinct premalignant clones in the non-cirrhotic liver.

Collectively, these findings suggest that transcriptomic analy-
sis corroborated genetic alterations identified at the genomic
level and could suggest clonality, aggressiveness, and metastatic
potential of multifocal HCC.
Validation studies of biomarkers in large cohort of patients with HCC

Lastly, to test the potential utility of our novel personalised
multi-omics model in HCC biomarker identification, regardless
of the types of HCC development, we then applied these multi-
omics results to search for novel biomarkers for HCC diagnosis
and prognosis by studying a larger cohort of HBV-HCC patients.

Genes with over four-fold differential expression in the PI and
PII tumours were evaluated for pathway enrichment. Five KEGG
or BioCarta [23] pathways comprising a total of 21 genes, includ-
ing cell cycle (hsa04110), p53 signaling (hsa04115), histidine
metabolism (hsa00340), G2/M checkpoint (g2Pathway), and
Ran-mediated mitotic spindle regulation (ranMSpathway), were
found to be exclusively enriched in PI tumours (Fig. 4A).

Seven of the highest level expressing genes (>10 fold) were
selected for further validation by qRT-PCR using paired tumour/
liver tissues from 174 HBV-HCC patients. Alterations in gene
expression at mRNA levels were confirmed for six genes inclusive
of HAL, SFN, KIF15, TTK, BUB1, and MCM4 (Fig. 4B).

In parallel, various clinicopathological characteristics includ-
ing age, HBsAg, ALT, albumin, Edmondson tumour grade, and
satellite lesion were found to be highly associated with at least
one gene, i.e., mRNA levels of SFN (p = 0.0004), TTK (p = 0.0051),
BUB1 (p = 0.0084), and MCM4 (p = 0.0126) were significantly cor-
related with tumour grade (Supplementary Table 14).
4 vol. 61 j 840–849
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Furthermore, we evaluated correlations of gene expression

levels with postsurgical prognosis. Remarkably, TTK mRNA
levels were inversely correlated with RFS and OS of patients
(Fig. 4C and D, Supplementary Fig. 7, Supplementary Tables 15
and 16). Empirically, types of multifocal HCC development post
hepatectomy may be distinguished according to the interval.
Early recurrences (61 year) are thought to arise mainly from
intrahepatic metastases, whereas late recurrences (>1 year) are
more likely to be multicentric in origin [24]. We noted that
among patients with recurrent HCC, the median RFS was
3.53 months in TTK-high group vs. 12.48 months in TTK-low
group (p = 0.0122). These data suggest that TTK expression might
be an independent prognostic indicator for metastatic potential,
postsurgical recurrence, and survival of HCC patients.
Discussion

This translational study with the application of comprehensive
and personal multi-omics analyses in HCC has two major innova-
tive findings. First, we were able to distinguish between meta-
static disease vs. synchronous primary tumour development at
the levels of genomic and transcriptomic studies. Our findings,
for the first time, not only confirmed but also defined the two
putative multifocal HCC development models via analysis of
tumour clonality. Secondly, using multi-omics data from these
initial studies, integrated with detailed clinicopathological infor-
mation, we were able to efficiently identify HCC biomarkers,
which were further validated using a large cohort of HCC
patients.

Sequential biopsies from diseased livers and from distinct
multifocal HCC could provide valuable tools to uncover stepwise
changes during hepatocarcinogenesis [25]. By contrasting multi-
omics profiling between tumour nodules as well as with control
liver and non-mutated genome of the same patient, we have
identified key mutational similarities and differences. Similarities
in catastrophic alterations of genomes in multifocal satellite
lesions and the presumed primary tumour in PI are suggestive
of a single clonal origin for the HCC, albeit with subsequent dif-
ferential sub-clonal mutations. This type of tumour evolution is
similar to metastases of other epithelial cancers such as prostate
[26], pancreatic [27], and breast cancer [28].

Moreover, varying degrees of genomic alterations in the con-
trol liver tissue of PI are indicative of molecular changes accumu-
lated during the destruction of normal liver structures and
nodule regeneration in a severely diseased cirrhotic liver with a
likely field effect [29]. Under such disease-predisposing liver con-
ditions [30], additional genetic mutations in critical genes, e.g.,
p53 pathway components and cell-cycle regulators, may facili-
tate hepatocyte malignant transformation and HCC progression.
Indeed, these multi-omics observations and assumptions are in
keeping with clinicopathological features and poor prognosis of
this patient who had cirrhosis and died of HCC recurrence.

In stark contrast, trivial genetic and functional changes in the
control liver of PII, with milder liver fibrosis and better prognosis,
Fig. 3. Functional enrichment maps of the differentially expressed protein-coding ge
expressed genes were visualised by Cytoscape plugin Enrichment Map. For each sample
genes and the colour intensity reflects the level of significance. Up-regulated gene sets
proportional to number of genes shared by connected gene sets. Map for each sample i
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are consistent with distinct mutation patterns in two tumours
that lack gene and function enrichments in cancer-related path-
ways. These findings suggest that two clones independently
expanded from different premalignant hepatocytes, likely due
to persistent HBV activity in the host genome, associated with
low carcinogenicity.

These approaches described here, once standardised could
provide valuable molecular implications for personalised treat-
ment and stratification of HCC. Molecular approaches to differen-
tiate multicentric occurrence from intrahepatic metastasis and to
evaluate the aggressiveness of existing lesions are not yet avail-
able for clinical use. The future availability of such robust and
simple tests would be critically important for surgical decision-
making. Currently, however, the limited feasibility of these
multi-omics approaches in terms of high-throughput and cost
largely limits their clinical utility.

Moreover, assessment of individual tumour pathogenesis and
aggressiveness of resected nodules by multi-omics profiling may
provide useful prognostic information to facilitate personalised
postsurgical management (e.g., adjuvant therapy and surveil-
lance), and direct treatment strategies for recurrences. For exam-
ple, patients with aggressive intrahepatic metastases such as PI
could be treated with targeted systemic therapy based on the
molecular profile of the original tumour (e.g., restoring p53 func-
tion in p53 mutant tumours) [31]. On the other hand, due to the
nature of multicentric and synchronous HCC, targeted therapy
choices in these patients would need to be based on analysis of
molecular changes in the de novo tumours instead of the previ-
ously analysed lesions. Patients with non-invasive multiple pri-
mary HCC such as PII may be followed with regular
surveillance imaging, may benefit from treatment of the underly-
ing liver disease, and may be a candidate for resection of any sub-
sequent recurrences.

Additionally, we demonstrate that comparative multi-omics
profiling of a complete collection of representative patient spec-
imens is very effective for HCC biomarker identification. Expres-
sion levels of four out of seven HCC-related genes identified/
examined here, namely SFN, TTK, BUB1, and MCM4, are strongly
associated with different tumour differentiation patterns. TTK is
further shown to be a promising prognostic marker for HCC.
Intriguingly, high-level expression of TTK has been shown to sig-
nificantly correlate with aggressive clinical courses and low sur-
vival rates in HCC. As a dual-specific protein kinase participating
in p53 pathway, TTK has been reported to contribute to tumouri-
genesis in many cancers by modulating the mitotic checkpoint
[32]. We also note that TTK has been previously demonstrated
in a microarray study to predict survival in a subgroup of HCC
patients [33]. All these observations suggest that TTK might be
a bona fide HCC biomarker with prognostic significance. However,
the role of TTK in hepatocarcinogenesis (with possible links to
p53 signaling) [32] remains elusive.

Prior well-conducted gene-expression profiling studies have
suggested several multi-gene score systems that can be used to
classify HCC or predict overall survival and/or recurrence
[29,34,35]. Our new prognostic maker, a single TTK gene model,
nes. The enriched gene sets from Gene Ontology based on two-fold differentially
, each node represents a gene set; size of the node is indicative of the number of
are shown in red, and down-regulated ones in blue. The thickness of each line is
s differently magnified for easier visualisation.
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Fig. 4. Validation of HCC biomarker identification data. (A) Pathway enrichment analyses of genes with over four-fold differential expression in the KEGG (upper) and
BioCarta (lower) pathways. Significantly enriched pathways with p <0.05 are shown with up-regulated ones in red and down-regulated ones in blue. On the left, genes
(contained to five pathways) only enriched in all PI tumours were listed from highest to lowest according to their average fold changes within each pathway. ⁄Genes
selected for qRT-PCR validation. (B) qRT-PCR analyses of mRNA expression of seven select genes using paired HCC and non-cancerous tissues from 174 HBV-HCC patients.
Data are given as mean ± SEM. ⁄⁄⁄p <0.0001; n.s., not significant. (C, D) Correlations of tissue TTK mRNA levels with recurrence-free survival (C) or overall survival (D) of
patients.

JOURNAL OF HEPATOLOGY
can not only accurately predict the recurrence rate, but also the
time of recurrence, which is very critical for clinical decision-
making. Early interventional therapy is suggested for TTK-high
patients (3.53 months of RFS), whereas TTK-low patients
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(12.48 months of RFS) only require standard surveillance post
hepatectomy. In contrast, other current clinical biomarkers such
as AFP can only be used as postoperative surveillance factors.
Intriguingly, it remains to be determined whether combining
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TTK with other previously reported prognostic signatures
[29,34,35] provides an improved predictive potency.

Of course, this novel integrative multi-omics approach needs
further validation using large and ideally prospective HCC (inclu-
sive of non-HBV-related) patient cohorts. Further advances in
NGS and computational methods, with increasing capacity and
decreasing cost, will expedite comprehensive characterisation
of the genetic and functional alterations occurring in individual
tumours. These advances may accelerate clinical translation of
‘‘omics’’ science into clinical applications that will direct persona-
lised molecular medicine in HCC, and potentially all types of
human cancer.
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